CLASS - VIII

CHAPTER - 4

Module - 1/2

PRACTICAL GEOMETRY

1. Introduction:

We require three measurements (of sides and angles) to draw a unique triangle.

Since three measurements were enough to draw a triangle, a natural question arises whether four measurements would be sufficient to draw a unique four sided closed figure, namely, a quadrilateral.

No, five measurements can determine a quadrilateral uniquely.

2. Constructing a Quadrilateral:

We shall learn how to construct a unique quadrilateral given the following measurements:

- When four sides and one diagonal are given.
- When two diagonals and three sides are given.
- When two adjacent sides and three angles are given.
- When three sides and two included angles are given.
- When other special properties are known.

Let us take up these constructions one-by-one.

2.1 When the lengths of four sides and a diagonal are given

We shall explain this construction through an example.

Example 1: Construct a quadrilateral $P Q R S$ where $P Q=4 \mathrm{~cm}, Q R=6 \mathrm{~cm}, R S=5$ $\mathrm{cm}, \mathrm{PS}=5.5 \mathrm{~cm}$ and $\mathrm{PR}=7 \mathrm{~cm}$.

Step 1 From the rough sketch, it is easy to see that PQR can be constructed using SSS construction condition. Draw PQR.

Step 2 Now, we have to locate the fourth point S. This ' S ' would be on the side opposite to Q with reference to PR. For that, we have two measurements.

S is 5.5 cm away from P . So, with P as centre, draw
an arc of radius 5.5 cm . (The point S is somewhere

on this arc!).

Step 3 S is 5 cm away from R. So with R as centre, draw an arc of radius 5 cm (The point S is somewhere on this arc also!) (Fig 4.8).

S should lie on both the arcs drawn.

So it is the point of intersection of the
two arcs. Mark S and complete PQRS.

PQRS is the required quadrilateral.

EXERCISE 1

1. Construct the following quadrilaterals.
(i) Quadrilateral ABCD .
$A B=4.5 \mathrm{~cm}$
$B C=5.5 \mathrm{~cm}$
$C D=4 \mathrm{~cm}$
$A D=6 \mathrm{~cm}$
$A C=7 \mathrm{~cm}$
(iii) Parallelogram MORE
$O R=6 \mathrm{~cm}$
$R E=4.5 \mathrm{~cm}$
$E O=7.5 \mathrm{~cm}$
(ii) Quadrilateral JUMP
$\mathrm{JU}=3.5 \mathrm{~cm}$
$\mathrm{UM}=4 \mathrm{~cm}$
$M P=5 \mathrm{~cm}$
$\mathrm{PJ}=4.5 \mathrm{~cm}$
$\mathrm{PU}=6.5 \mathrm{~cm}$
(iv) Rhombus BEST
$B E=4.5 \mathrm{~cm}$
$\mathrm{ET}=6 \mathrm{~cm}$

2.2 When two diagonals and three sides are given:

When four sides and a diagonal were given, we first drew a triangle with the available data and then tried to locate the fourth point. The same technique is used here.

Example 2: Construct a quadrilateral ABCD , given that $\mathrm{BC}=4.5 \mathrm{~cm}, \mathrm{AD}=5.5$ $\mathrm{cm}, \mathrm{CD}=5 \mathrm{~cm}$ the diagonal $\mathrm{AC}=5.5 \mathrm{~cm}$ and diagonal $\mathrm{BD}=7 \mathrm{~cm}$.

Solution:

Here is the rough sketch of the quadrilateral ABCD .
Studying this sketch, we can easily see
that it is possible to draw ACD first (How?).

Step 1 Draw ACD using SSS
construction (Fig 4.11).
(We now need to find B at a distance

of 4.5 cm from C and 7 cm from D).

Step 2 With D as centre, draw an arc of radius 7 cm . (B is somewhere on this arc).

Step 3 With C as centre, draw an arc of
radius 4.5 cm (B is somewhere on this arc also).

Step 4 Since B lies on both the arcs, B is the point intersection of the two arcs. Mark B and complete ABCD.

ABCD is the required quadrilateral

EXERCISE 2

1. Construct the following quadrilaterals.
(i) quadrilateral LIFT
(ii) Quadrilateral GOLD
$\mathrm{LI}=4 \mathrm{~cm}$
$\mathrm{OL}=7.5 \mathrm{~cm}$
$\mathrm{IF}=3 \mathrm{~cm}$
$\mathrm{GL}=6 \mathrm{~cm}$
$\mathrm{TL}=2.5 \mathrm{~cm}$
$\mathrm{GD}=6 \mathrm{~cm}$
$\mathrm{LF}=4.5 \mathrm{~cm}$
$\mathrm{LD}=5 \mathrm{~cm}$
$\mathrm{IT}=4 \mathrm{~cm}$
$\mathrm{OD}=10 \mathrm{~cm}$
(iii) Rhombus BEND

$$
\begin{aligned}
& \mathrm{BN}=5.6 \mathrm{~cm} \\
& \mathrm{DE}=6.5 \mathrm{~cm}
\end{aligned}
$$

